An Integrative Clustering Approach Combining Particle Swarm Optimization and Formal Concept Analysis
نویسندگان
چکیده
In this article we propose an integrative clustering approach for analysis of gene expression data across multiple experiments, based on Particle Swarm Optimization (PSO) and Formal Concept Analysis (FCA). In the proposed algorithm, the available microarray experiments are initially divided into groups of related datasets with respect to a predefined criterion. Subsequently, a hybrid clustering algorithm, based on PSO and k-means clustering, is applied to each group of experiments separately. This produces a list of different clustering solutions, one per each group. These clustering solutions are pooled together and further analyzed by employing FCA which allows to extract valuable insights from the data and generate a gene partition over the whole set of experiments. The performance of the proposed clustering algorithm is evaluated on time series expression data obtained from a study examining the global cell-cycle control of gene expression in fission yeast Schizosaccharomyces pombe. The obtained experimental results demonstrate that the proposed integrative algorithm allows to generate a unique and robust gene partition over several different microarray datasets.
منابع مشابه
Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملFuzzy clustering of time series data: A particle swarm optimization approach
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...
متن کاملAn efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization
This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...
متن کاملAccelerated Chaotic Particle Swarm Optimization for Data Clustering
Data clustering is a powerful technique for discerning the structure of and simplifying the complexity of large scale data. An improved technique combining chaotic map particle swarm optimization (CPSO) with an acceleration strategy, is proposed in this paper. Accelerated chaotic particle swarm optimization (ACPSO) searches for cluster centers of an arbitrary data set and can effectively find t...
متن کاملA New Approach for Data Clustering Based on PSO with Local Search
Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. The term “clustering” is used in several research communities to describe methods for grouping of unlabeled data. These communities have different terminologies and assumptions for the components of the clustering process and the context in which clustering is used. This paper looks into th...
متن کامل